AXIALLY SYMMETRICAL INSTABILITY MODES
IN A CYLINDRICAL SHELL UNDER IMPACT
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An analysis is presented of the interaction between longitudinal and transverse motions of a
circular cylindrical shell under impact on the end surface. At infinite and finite velocities of
perturbation propagation along the generatrix this analysis reveals the instability modes in
the shell which build up fastest and are similar to those revealed if the buckling process at

a finite velocity of perturbation propagation were described in the real time of compressive
loading action. It is established that a cylindrical shell under intensive loading can be simu-
lated by a rod under longitudinal impact (the similarity parameters are indicated). Thiscon-
clusion is confirmed by a comparison with experimental results,

Elastic systems are characterized by a selective amplification of certainhigher-order instability modes
under conditions of high-intensity loading [1]. The effect of a wave process on the buckling of rods and shells
with a sudden application of a load to an elastic system has been observed in the experiments in [2-4]. The
instability mode has been determined in an asymptotic representation for a semiinfinite rod, assuming a
finite velocity of longitudinal perturbations [5] and with the aid of series expansion on a variable interval[6].
A problem analogous to the one which will be considered here has been solved numerically in [7]; probably
because of the low impact rate, no wave generation was observed along the shell. An effect of a wave pro-
cess on the buckling mode is mentioned in [8].

1. Formulation of the Problem. The longitudinal and the transverse motions of a circular cylindrical
shell are described by the following system of equations:

Eh
D (wxxxx +12 ?ff—h‘) R (X ,vz)u’ x 1 (wa)x + phwy = f (2, t) (1.1)

Nyy— 2Ny =vp (h/ R)wy, (1.2)
Here x, t are the longitudinal coordinate and the time; u, w are the longitudinal and the transverse
displacement of the mean shell surface with the radius R; the subscripts refer to differentiation with respect

to the respective variables; E, v, p, are the Young modulus, the Poisson ratio, and the material density; D
is the cylindrical rigidity; c = {E/[p(1—1?) }1 2 is the velocity of sound; 7(x, t) is a function defined by per-

turbations or imperfections; and N is the longitudinal force,defined in the linear approximation by the equa-
tion

=[Eh/ (1 — 9] (u, —vw/R) (1.3)

The initial and the boundary conditions for the impact state at the time of loading a semiinfinite hinge-
supported shell which had been at rest before the impact are

w=w=0 =00z o), W=1Wg, =10 (z=0)

N=Ny=const ¢>0,2=0, N=N,=0 (t=0,2>0) (1.4
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During the loading of the shell there may appear small transverse loads, the force Ny, may be applied
eccenirically, and also the shape of the mean shell surface may differ from an ideal cylindrical one. All
this is accounted for by function f(x, t), which will be assumed given.

Equations (1.1) and (1.2) are identical to those known in § 215 [9] from the theory of vibrations of
circular cylindrical shells, where the expressions for the forces at the mean surface have been linearized
through superpositions.

The solution of problem (1.1), (1.2), (1.4) becomes much simpler when the longitudinal force N(x, t) =
const. This can be realized in two cases.

1) If the shell wall is sufficiently thin (h/R <« 1) to make the expression on the right-hand side of (1.2)
negligibly small; then the solution to the simplified wave equation with respect to the longitudinal force for
the shell under conditions (1.4) becomes

’ N =N, = const

2) If the perturbations are propagated along the shell at an infinite velocity; then we have from the
equation of motion

Uge — VW, | R = Uy [ ¢

that N = N, = const at ¢~ (see (1.3)).

2. Analysis of Buckling Modes under a Constant Force. We consider the equation of dynamic insta-
bility for a shell:

D [wxxxx + 12 (1 - Vz) R—2h~2w] + Nowxx ‘_!"‘ph'wtt = f* (.’E, t)” (2 1)

This equation has been obtained by eliminating ux from (1.1) with the aid of (1.3), and F*(x, t) denotes
those components which are independent of w.

The initial and the boundary conditions for Eq. (2.1) are (L is the shell length)
w=w,=0 ¢=00<s<L), W=We=0 (z=0I) 2.2)

The solution to problem (2.1), (2.2} is sought in the form

W= 2 G QO W (2), W, (2)=sin 2% (m=1,2,..) (2.3)

m=1 L

Here Wy, are the instability modes.

We now analyze the behavior of a shell under intensive loading, i.e., under Ny > N* with N* = 4[3(1~
v2)]1Y/2DR™h™! being the critical Euler load.

Of interest during the action of high-intensity loads N, >N* are those degrees of freedom in the system
(instability modes) which correspond to a fast increase of deflections [1]. The fastest growing instability
mode increases exponentially with the index «, with

12(1 —v%) D

oA = e ph (714 - 1)9 le = J* (2.4)
Index «, of the fastest growing mode in a rod is
el
%" = Zop i (2.5)

The designations are the same here as in [1]. The instability-mode numbers for (2.4) and (2.5) are
respectively

_27]2[3(1—\’3)]'/' 2 s W
m=—— e REr M=% 2.6)
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The dynamic instability modes and the rates of deflections in a circular cylindrical shell can be de-
termined experimentally by subjecting rods to intensive loading, with the shell simulated by a rod whose
parameters are such that o = ¢y and m = m; [see Eqgs.(2.4)-(2.6)l.|Itis to be noted that the equality o =
is approximately satisfied when n% > 1.

3. Analysis of Instability Modes with the Interaction between Longitudinal and Transverse Motions
Taken into Account. In the case of thin-walled shells (¢ = h/R « 1) the right-hand side of Eq. (1.2) is zero,
to the first approximation. For analyzing the solution to Eq. (1.1) with relation (1.3) applicable, we may
use the method of nonsteady deformations on a variable interval [5, 6].

The solution to the wave equation (1.2) with the initial conditions (1.4) will be sought in the form
N =N, + &N, (3.1
The first term Ny here describes the propagation of the boundary mode along a rod (see (1.4)):
Ny=N, @<cth No=0 @>a) 3.2)
The second term is the solution to the nonhomogeneous equation (1.2) with a known right-hand side:

t xte(i-t)
le_ﬂgdf S we* € 7) dE (3.3)

. o
[} x--¢ (1—1)

In order to obtain function wﬁ in (3.3), one extends function wi oddwise over the entire x axis. If wgt=
0 at x=ct, then N; =0 at x= ct.

Representing the solution to Eq. (1.2) in the form (3.1) is valid until Ny/N= 1. It must be noted that
smallness of the second term in (3.1) is ensured by the fact that the shell is thin-walled.

As is well known, flexural perturbations defined by Eq. (1.1} at x > ¢t are insignificant. Furthermore,
in a more precise formulation of the problem there appear dynamic equations of the Timoshenko kind for a
beam, from which it follows that the flexural perturbations propagate at a finite velocity cx lower thanc (c,<
c). Therefore, we will analyze the solution to Eq. (1.1) in terms of series defined on a variable interval [6].

After eliminating uy from Eq. (1.1) with the aid of relation (1.3), we obtain
D [wxxxx -+ 12 (1 - Vz) R—Zh—zw] + (wa)x + phwtt = f* ('x’ t) (3‘,4)

Here f*(x, t) is a function which depends on the longitudinal force N. I the right-hand side in (1.1)
fx, t) =0 at x < ct, then s*(x, t) = 0 at x > ct in (3.4). Consequently, for Eq. (3.4) the problem is formulated
on a variable interval. The boundary conditions for this problem are

W= =0 =0, wW=w,=0 z=l=a)) (3.5)
The initial conditions are zero-value conditions, namely:
w=w,=0 (t=0) (3.6)

For expanding the solution to problem (3.4)-(3.6) into a series, we need the instability modes in the
shell., We will now examine these modes:

D [Woaxx + 12(1 — v2) R212WO] AW L, = 0
Wo=W2,=0 (z=0, W'=W,=0 (z=0

(3.7

Roots kj (j=1, 2, 3, 4) of the characteristic equation for (3.7) become purely imaginary at A — «:

k1,2 = +iky, k3,4 =4 iky, ko~ ny kl-—> 0 (A — o0)

Straight calculations show that the natural modes of a rod and of a cylindrical shell converge asymp-
totically at A —«. The asymptote of these modes, W° = sin mnx/7, satisfies the conditions of a hinged sup-
port at both ends x=0,1; we = Wy = 0.
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Let us express the solution to problem (3.4)-(3.6) in the form
/ L owe= ZW,,. (2, 1) g (t) (3.8)
m

where W, (%, t) are the eigenfunctions of the following problem:

D [W saas + 12 (1 — v2) RH2W] 4 A [4 + es(z, 8)] Wop = 0
W=Wy,=0 (x=0,0), s{z,8)=N;/N, (3.9)

In order to obtain the eigenfunctions and the eigenvalues of problem (3.9), we make use of the perturba-
tion theory [10]:

W (@, t) = W@, t) + eWR @, 8) + oo, BAp=hp + AT 4 ... (3.10)
Here Wy, and Ay, are the asymptotes of the natural instability modes and of the eigenvalues in prob-
lem (3.7). In Eq. (3.9) and in relations (3.10) t is treated as a parameter. ’

We now insert series (3.8) into Eq. (3.4), and in series (3.10) we disregard derivatives with respect
to time which are of the order of €; this means that all the useful information about the growing instability
modes is contained in the function qm(t). The orthogonality condition for W, (%, t) on a variable interval
yields a system of ordinary differential equations for qm(t): _

phay” +{D[ ()" + 2GmE] = Ny (52) + et O} 0 =1 ) - (3.11)

Here the small term es*(f} is related to the variability of the longitudinal force N [see (3.1)] and ac~
counts for the interaction between the various instability modes in the shell (degrees of freedom in the gys-
tem). For sufficiently thin-walled shells (e «< 1) this term may be omitted. From the simplified Eq. (3.11)
we find the fastest growing instability modes in a shell [5]. It is easy to show that for these modes the ratio
! /m remains constant [see (2.4) and (2.6)]:

1% — 1 n (Rh)

m N[42 (1 — v (3.12)
The revealed instability mode always occurs in a shell because of the nonlinear term es*(t) present

in Eq. (3.11), even when initial irregularities stimulate the development of one or several instability modes.

The effect due to initial irregularities, perturbations in the motion, and variability of force N are all de-

scribed by the functions fm(t).

It follows from relations (3.12) that to the first approximation the nodes (the nulls of the flexure func-
tion) are fixed in position,and this agrees with the experimental resulis in [4]. Therefore, we will seek the
approximate solution to Eq. (3.4) in the form

w(z,©) = Q(YyW*(z), W*(z)=sinnz/l* 0<z<), W*@)=0 > (3.13)

Here r is the real time of action of the compressive force N, i.e.,

T=¢t—2zlc (3.14)
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In Eq. (3.4) we now introduce variables x and 7. Disregarding the second-degree terms (h/i* « 1),
we obtain an equation which is formally identical to Eq. (3.4) with t replaced by 7. We seek a solution to
this equation in the form (3.13), applying for this purpose the Bubnov-Galerkin method. In this way, function
Q(1) is found from the solution to the problem

Q" —aQ=F(), 0=0=0, v=0

The solution to this problem is obvious.

Typical buckling modes in shells at various instants of time are shown in Figs. 1 and 2 with the co-
ordinates wy = w/Q(t,) and xx = x/1*; the dashed curves represent the amplitude distribution of a selected
instability mode along the shell. In Fig. 1 curve 1 has been plotted for time t=t;, and curve 2 has been
plotted for time t=1, = 1.4 t;. The effect of interaction between longitudinal and transverse motions is shown
in Fig. 2. At a finite velocity of longitudinal perturbations ¢ = ¢; the buckling mode looks like curve 1. For
¢ = 2c¢y we have curve 2,and for an infinite velocity ¢ —« we have curve 3 (all curves have been plotted for
one and the same instant of time t=t,). The last curve coincides with the buckling mode which has been
shown by Lavrent'ev and Ishlinskii in [1] to grow fastest. I is to be noted that the perturbed region (w = 0),
which corresponds to curve 1 in Fig. 2 (and to curve 2 in Fig. 1), propagates till x = 71 *; a transverse mo-
tion described by curve 2 in Fig. 2 is observed till x = 141 *; according to {1], the entire shell at once par-
ticipates in the transverse motion.

Qualitative features of the revealed instability mode agree with experimental results obtained in lon-
gitudinal impact loading of rods (Figs. 6 and 7 in [2] and Figs. 1 and 3 in [3]) and cylindrical shells (Figs.
6 and 7 in [4]). A comparison with the experiment is valid only for the time preceding a reflection of the
wave. In the experiments in [4] this time was approximately 60 usec.
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